The CWB Monthly and Seasonal Climate Forecast Systems

Jhy-Wen Hwu, Mong-Ming Lu, Chih-Hui Shiao, Yea-Ching Tung Research and Development Center, Central Weather Bureau, Taiwan

CWB NWP GFS modeling team:

Jen-Her Chen, Chin-Tzu Fong (NWP leader), Fong-Ju Wang

- Taiwan population (23 M) ~ 2/3 of California area (36,188 km2) ~ 1/12 of California
- Taiwan is an area at high risk for natural disaster in the world. 99% of land and population is exposed to two or more natural hazards. Global Risk Analysis (World Bank)
- The most happening natural disasters: typhoon, flood, land slide, drought, earthquake

Monthly and Seasonal Climate Forecast – extended development from NWP

CWB 2-tier seasonal Climate Forecast Systems

CWB OPGSST

AGCM: CWBGFS and ECHAM5

CWBGFS: **T42L18** (Hwu et al., 2002)

Radiation: Harshvardhan et al.(1987)

Cumulus: relax Arakawa-Schubert scheme(Moothi and Suarez 1992)

Large scale precipitation: RH=100%

Shallow convection: Li(1994)

Vertical turbulence mixing: TKE-ε scheme(Detering and Etling 1985)

Surface flux: similarity theory(Businger 1971)

Soil model: two layer soil model (Mahrt and Pan 1984)

Gravity wave drag: Palmer et al.(1986)

ECHAM5: **T42L19** (Roeckner et al., 2003)

Radiation: Shortwave Fouquart and Bonnel (1980);

Longwave Mlawer et al. (1997)

Cumulus: Tiedtke (1989) with modifications of Nordeng (1994) for penetrative convection

Grid-scale precipitation: Tmopkins (2002)

Vertical turbulence mixing and surface flux: similarity theory

Subgrid scale orography parameterization: Lott and Miller (1997) and

Lott (1997)

Gravity wave drag: Hines (1991a, b, c, 1993)

Dynamical Downscaling

Data Used	Link	Variables	Frequency (/month)
NCEP GDAS	ftp:// ftpprd.ncep.noaa.gov/ pub/data/nccf/com/gfs/ prod/gdas.\$yy\$mm\$dd/	Mean sea level pressure / Geopotential height / Temperature / Specific humidity U-wind / V-wind	20
NCEP R1	ftp://ftp.cdc.noaa.gov/ Datasets/ ncep.reanalysis.derived/ pressure ftp://ftp.cdc.noaa.gov/ Datasets/	U-wind / V-wind (monthly mean) Mean sea level pressure (monthly mean)	1
NCEP OI SST	ncep.reanalysis.derived/ fttp://dice ftp:emc.ncep.noaa.gov ftp://fitsstyom.gov.au/	Sea surface temperature (monthly mean)	1
CAWCR Ocean	ANALS	14 layer ocean temperature data	1
NCEP CFSv1 SST	ftp://tgftp.nws.noaa.gov/ SL.us008001/ST.opnl/ MT.cfs_MR.fcst	Sea surface temperature	once a day
NCEP CMAP	ftp://ftp.cdc.noaa.gov/ Datasets/cmap/enh	precipitation (monthly mean)	1

Operational Forecast Schedule

- IC: last 10 days of lead0 from NCEP/GDAS.
- 4 members run in all IC+2 days (GFS/OPGSST, GFS/CFS, ECHAM/OPGSST, ECHAM/ CFS) with 7 months forecasting.
- •Each member need about 40 minutes for model running and another 30 minutes for post process.

Retrospective Forecast Data Base

- Background Statistics -
- 25 years: 1981-2005
- 40 forecasts per calendar month
- Each forecast predicts 9 months

Forecast Skill Evaluation

- Pattern Anomaly Correlation
- Temporal Correlation
- Mean Square Skill Score
- Gerrity Skill Score
- ROC
- Relative Diagram

CWB 2-T CFSv1 FORECAT PRODUCTS

• Global SST (60°S~ 60°N)

issuing frequency: 1 time/month

lead time: 0-7 months

product format: monthly, seasonal

• Global Temperature, Precipitation

issuing frequency: 1 time/month

lead time: 0-7 months

product format: monthly, seasonal

• Taiwan Temperature, Precipitation

(downscaled to 9 stations)

issuing frequency: 1 time/month

lead time: 0-7 months

product format: monthly, seasonal

(dynamical downscaling – downscaled to 4 regions)

issuing frequency: 1 time/month

lead time: 0-4 months

product format: monthly, seasonal

Calibration Basis ~

CWB 2-tier CFS Hindcast/ Forecast Data Base:

1981-present daily outputs at standard pressure levels

Observation: Jul 2011 (lead 0)

Sea Surface Temperatures

Forecast~ Oct 2011

Forecast~ Nov 2011

Precip Rate: Jul 2011 (lead 0)

Forecast~ Oct 2011

Rainfall Anomaly

Forecast~ Nov 2011

Sfc Temp: Jul 2011 (lead 0)

2-meter Air Tempearture Anomaly

Forecast~ Sep 2011

Forecast~ Oct 2011

Forecast~ Nov 2011

Category Probabilities of Monthly T2m

22N

The Monthly-to-Seasonal Climate Forecast System Development (II)

2010~2015

CWB CFS Improvement/Development

- ➤ Move toward a **seamless forecast system** use a lower-resolution version of NWP operational AGCM for monthly-to-seasonal forecast NWP: T319L40

 CWB 2-T CFSv2: T119L40
- Update forecast initial condition use CFSR
- ➤ Improve MME strategy include NCEP CFSv2 forecasts in CWB 2-tire CFSv2 (feasibility?)

➤ Develop a **one-tier climate forecast system** – replace the AGCM in NCEP CFSv1 by CWB's AGCM (collaborator - NCU) CWB 1-T CFSv1: T119L40+MOM3

Attribute	T119L40	T42L18
Radiation	Unified two-stream calculation with K-correlated method (Fu and Liou 1992, 1993; Fu et al. 1997)	Harshvardhan et al. (1987)
Cumulus Convection Parameterization	Simplified Arakawa-Schubert (Pan and Wu 1995)	Relax Arakawa-Schubert scheme (Moothi and Suarez 1992)
Grid-scale Precipitation	Predict could water scheme (Zhao and Frederick 1997)	Diagnostic method (RH value)
Shallow Cumulus Convection	Li and Young (1993)	Li (1994)
Boundary-layer Parameterization	First-order nonlocal scheme (Troen and Mahrt 1986)	TKE-ε scheme (Detering and Etling 1985)
Land Model	NOAH (Ek et. al. 2003)	Bucket method (Manebe 1969)
Surface-layer Parameterization	Similarity theory (Businger 1971)	Similarity theory (Businger 1971)
Gravity wave drag	Palmer et al. (1986)	Palmer et al. (1986)

CWB 2-T CFSv2 Development & Data Requirements

Collection Complete

FINALLY...

Archive (Reanalysis / Reforecasts) Requirement:

- CWB would like to use the Archived Reanalysis (CFSR) data (1981-2010) for building the reforecast data base of CWB 2-Tier CFSv2.
- CWB plans to start the reforecast runs in 2012 and to complete the 30-year reforecast in early 2014.
- CWB would like to get NCEP CFSv2 Reforecast (CFSRR) data for forecast comparison and MME forecast system development for both monthly-to-seasonal and 2nd week forecasts.

The Reforecast data of interest are 36 members per month with selective fields. The 36 members consist of 12 members of 9 month runs and 24 members of 45 days runs.

Archive (Real time) Requirement:

- CWB would like to use the Real Time analysis data, consistent with CFSR, as the initial condition for the operational runs of CWB 2-Tier CFSv2.
- CWB would like to use the Real Time forecast data, consistent with CFSRR, as members of CWB MME forecast system.

NOMADS Requirement:

- For the aforementioned purposes, CWB will need the following help from NOMADS.
- 1) The ftp option and inventory files for "Climate Forecast System Initial Conditions" at http://nomads.ncdc.noaa.gov/data.php?name=access#cfsr
- 2) The ftp option and inventory files for "Hourly, Pressure, Fluxes, and Ocean Data" under "Climate Forecast System Reanalysis" at http://nomads.ncdc.noaa.gov/data.php? name=access#cfsr

Process	CWB 2-tier CFSv1	CWB DDFS
Initial Obs. Data Sfc. & Atmosphere	NCEP Analysis - • GDAS • R1; • OI SST	
SST Forcing	NCEP CFSv1 SST CWB OPGSST data interpolation &	IRI Global Forecast
Input Data Pre-process	initialization (hydrostatic adjustment ECHAM)	(15 members)
Global Forecast	 CWB-GFS/NCEP-SST ECHAM5/NCEP-SST ECHAM5/OPGSST 10x4=40 members 	
Regional Downscaling	SVD-based downscaling to 9 Taiwan stations	1 CWB RSM (60km)2 NCEP RSM (60km)15x2=30
Forecast Result Post-process	● ensemble mean ● anomalies ● tercile category	4 Taiwan regions -● ensemble mean● anomalies ● tercile
Final Forecast	➤ T, Prcip • ensemble mean • anomalies • tercile category	➤ T, Precip • ensemble mean
Products	► Large-scale SLP, U,V,T,Z - • ensemble mean• anomalies	• anomalies • tercile
Forecast Dissemination	http://www.cwb.gov.tw/V7/climate/climate_info/ forecast/forecast_4.html	http://www.cwb.gov.tw/V7/ climate/climate_info/ forecast/forecast_5.html